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Abstract
We present Monte Carlo simulations of two-dimensional colloidal solids interacting with
disordered and ordered substrate potentials which in practice are created by interfering laser
beams. The filling factor η, the number of colloids per potential minimum of the substrate, is
taken to be either 1 or 1/9. For an ordered and commensurate two-dimensional substrate with
η = 1, the solid, being pinned to the periodicity of the substrate, always adopts the perfect order
of the substrate, irrespective of the strength of the pinning potential. For η = 1/9, a solid phase
(‘floating-solid’) with the same translational order decay characteristic as the free solid can
form. We explore the nature of this phase and show phase-diagrams containing all three
transitions: liquid to pinned-solid, liquid to floating-solid and floating-solid to pinned-solid.
We also consider the case of a disordered substrate with a filling factor η = 1/9 and show that
a floating-solid phase can also exist above such a glassy substrate.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of two-dimensional (2D) crystals has a long-
standing history in colloid science, beginning with the early
work of Pieranski [1]. Nowadays, micrometer colloids located
at the air–water interface form almost perfect 2D crystals with
grain-boundary-free regions extending over several hundreds
of lattice constants and out-of-plane fluctuations of less than
10−2 the particle diameter [2, 3]. These systems have been
studied with a view towards understanding basic problems in
statistical physics, as for example the melting of crystals in
two dimensions [3]. More recently, such colloid systems have
been taken also as model systems for fundamental problems
in the surface sciences. For this, the colloidal systems have
been brought into contact with artificial substrates created by
interfering laser beams. Several experimental, numerical and
theoretical studies of 2D colloids interacting with such light-
induced substrates can be found in the literature [4–6].

One of the most intriguing features of 2D solids is the
fact that a true long-range crystalline order in two dimensions
cannot exist because such a crystal is not stable against
thermally excited long-wavelength phonons [7]. On the other

hand, 2D crystals interacting with commensurate substrates are
sometimes protected against such an instability. The present
paper explores this aspect in more detail; it addresses the
question under what circumstances 2D colloidal crystals can be
stabilized by means of laser-induced substrates and how they
react when exposed to disordered substrates.

To set the stage, we will first consider perfectly
commensurate hexagonal substrates with η = 1/9 and 1 where
η is the filling factor giving the ratio between the number of
colloids and the number of substrate minima. The effect of
periodic light fields on colloidal crystals is to introduce a set
of ‘springs’ connecting each particle to fixed points in space.
In [8], it has been shown that for a commensurate light field
the additional set of springs will lead to a shift of the phonon
bandstructure and that at least two such springs per particle
are needed to protect the crystal against the destructive effect
of long-wavelength phonons, by lifting the destabilizing jump-
singularity of the phonon density of states at the center of the
Brillouin zone. Stabilized by such springs, the crystal shows
perfect long-range order with a non-decaying translational
order parameter. Considering a commensurate hexagonal
substrate with η = 1, there are effectively three springs per
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particle connecting each single particle to exactly one site of
the hexagonal light lattice. It is clear then that the crystal
should always be registered (or ‘pinned’) to the periodicity
of the substrate, thus showing the perfect order which the
substrate dictates.

Much more interesting therefore is the case when η < 1,
i.e. when the substrate has more minima than there are colloidal
particles in the system, because now a competing solid phase
(the ‘floating-solid’) can exist [9]. This solid is again not
stable: in spite of the presence of a commensurate supportive
substrate, the translational order of the floating-solid decays
just like that of the free solid. So, for η < 1 we have the
interesting situation that the substrate cannot always stabilize
the solid. Whether or not a solid is pinned or floating depends
on the colloid–substrate interaction and the temperature. In this
paper, we consider two typical colloidal systems and present
phase-diagrams showing the melting and depinning transition
lines in a plane spanned by temperature and substrate strength.
It is mainly this latter variable, the substrate strength, which
makes colloidal monolayers on substrates so special, because
this strength can be controlled experimentally—in contrast
to corresponding surface science systems where the substrate
potential cannot be changed.

Given that an ordered substrate can stabilize a 2D solid
phase, one is tempted to ask the reverse question as to whether
a disordered (glassy) substrate is having a destabilizing effect,
i.e. whether a glassy substrate can destroy the order of a 2D
solid. This question has already received some attention in
the literature, triggered by an early work by Nelson [10] on
crystalline films on disordered substrates (with results later
corrected in [11]), and continued by more recent studies [12],
but has never been brought into context with the peculiar
pinned/floating scenario shown by systems with η < 1. For
such systems another interesting question arises; can a floating-
solid phase survive when the ordered substrate is replaced by a
disordered substrate? This question—explored and discussed
again on the basis of the two colloidal systems—will guide us
through the second part of the paper.

2. Basic equations and technical details

We here report results for two kinds of colloid–colloid pair-
potentials u(r). To represent a system of Yukawa particles,
u(r) were chosen to be

βu(r) = �
exp[−2r̂]

r̂
(1)

while an alternative system of superparamagnetic colloids was
considered taking

βu(r) = �

r̂ 3
(2)

for the interaction potential [3]. Here r̂ = √
πρr and � are the

dimensionless distance and interaction strength, respectively,
while β = 1/kT is the inverse temperature and ρ the particle
area density. In the following, 1/� is alternatively interpreted
as the system temperature. Our model Hamiltonian

H =
∑

i< j

u(ri j ) +
∑

i

V (�ri ) (3)

consists of two sums, a sum over the colloid–colloid pair-
potentials and a sum over the colloid–substrate interactions,
where V (�ri ) is the substrate potential and �ri the position of
the i th colloid. This Hamiltonian is studied using Monte Carlo
(MC) simulations of N = L2 colloidal particles confined to a
simulation box of dimensions Lx = La0 and L y = La0

√
3/2,

where a0 is the lattice constant of the hexagonal colloidal
crystal. The hexagonal substrate is realized in our simulation
by using the expression

V (x, y) = −v
2

9

(
3

2
+ cos

4πy√
3as

+ 2 cos
2πy√

3as

cos
2πx

as

)

(4)
where as is the lattice constant of the substrate. Note that
−v � V (x, y) � 0 where v is the substrate strength. The
lattice constant as of the substrate lattice is to be distinguished
from the lattice constant a0 of the colloidal crystal. The
ratio of both constants determines what is known as the
filling factor η = a2

s /a2
0 . Since it counts the number of

colloids per substrate minimum, it can also be used when
disordered substrates are considered, provided as is redefined
appropriately. Experimentally, such substrates are realized
through the interference pattern of three interfering laser light
beams [6].

To study the effect of pinning disorder we have
alternatively used a disordered substrate potential, which
though having the same number N/η of minima as in the
ordered case, have minima positions �Ri that are randomly
distributed over the simulation box of area L2a2

0

√
3/2. More

specifically, we have replaced equation (4) by

V (�r) = min{−v exp(−|�r − �Ri |/ξ 2)}i=1,N/η (5)

where the range ξ of the individual minimum were chosen
such that N/η times πξ 2 covers the total area of the simulation
box, leading to ξ 2 = ηa2

0

√
3/2π . To save computer time we

prepared the potential landscape just once before starting the
simulation. For this we have divided the whole simulation area
into small squares and then set the value of the potential by
calculating the substrate potential at the center of the square.
Care has been taken to ensure that the sizes of the squares are
always much smaller than typical trial MC moves.

Some technical remarks. We have carried out 7 × 106 MC
passes through the lattice, 2 × 106 to equilibrate and another
5 × 106 to compute averages. For L = 60 (3600 particles),
a single data point in figure 2 took about 24 h CPU time on
a 2.2 GHz processor. For reasons of numerical efficiency,
both pair-potentials were truncated beyond a cut-off radius of
rc/a0 = 1.5. We have also carried out some trial calculations
taking a bigger cut-off radius but we did not find any qualitative
change in the results. Furthermore, we have employed
periodic boundary conditions. As for the random substrate
calculations, for each data point the random distribution of �Ri

has been different. Starting from a randomized initial colloidal
configurations, the system was again carefully equilibrated
which now required much more time than in the ordered case.

As explained in the introduction we need to distinguish
a pinned-solid phase from a floating-solid phase. This is
achieved by means of the translational order parameter

C �G( �Ri j) = 〈ei �G.[�u( �Ri )−�u( �R j )]〉 = 〈cos(Gxuxi j + G yuyi j)〉 (6)
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Figure 1. Structure factor at the first-order Bragg peak as a function
of the inverse system temperature �, for a 2D system of
superparamagnetic colloids interacting with a hexagonal substrate,
equation (4), of various strengths βv ranging between 0 and 0.1� as
indicated. The dashed, red lines correspond to a system size of
L = 40 (1600 particles), the black solid line to L = 60
(3600 particles). For βv = 0.001� (lines with circles) a transition
floating-solid ↔ pinned-solid is observed. The free system
(βv = 0�) melts at �m = 1/Tm = 55, while the melting point of the
system most strongly pinned (βv = 0.1�) is shifted to
�m = 1/Tm = 30. Filling factor: η = 1/9.

where �u( �R) = �r( �R) − �R is the displacement of a particle at
�r( �R) from its lattice site �R while uxi j , uyi j are the components
of �u( �Ri ) − �u( �R j ). Gx and G y correspond to the components
of the reciprocal lattice vector �G. We here consider reciprocal
lattice vectors �G = �G1 pointing to a lattice point a distance
4π/

√
3a0 away from the center of the first Brillouin zone.

While on a regular substrate a pinned-solid shows long-range
translational correlations, C �G1

(Ri j) = const. > 0, and a liquid
exponentially decaying correlations, C �G1

(Ri j) ∼ e−Ri j /ξ , the
correlations of a floating-solid are somewhere in between these
two limits, showing an algebraic decay,

C �G1
(Ri j) ∼ R

−ηG1 (T )

i j (7)

with the exponent ηG1(T ) depending on G1, the temperature T
and the solid’s bulk and shear moduli [9]. An alternative way to
test for the behavior of the translational correlations is obtained
by substituting C �G1

(Ri j ) for each phase into the structure factor

S(�k) = (1/L2)

〈∣∣∣∣∣
∑

j

exp(i�k · �r j )

∣∣∣∣∣

2〉
(8)

leading to the expression [9, 13]

S(G1)

L2
∼

⎧
⎪⎨

⎪⎩

1 T < Tc pinned-solid

L−ηG1 (T ) Tc < T < Tm floating-solid

(ξ/L)2 Tm < T liquid
(9)

which translates each phase’s decay characteristic into a typical
dependence of the structure factor on the system size L. Here
we have introduced two transition temperatures: Tc for the

Figure 2. Same quantity as in figure 1, plotted now as a function of
the system size L , for βv = 0.001� and for a set of different
temperatures. From top to bottom: � = 900, 700, 500, 300 (open
circles, L-dependence typical of pinned-solid),
� = 120, 105, 90, 75, (filled circles, L-dependence floating-solid).
Lines are fits to the expression L−ηG1 (T ) with the resulting exponent
ηG1(T ) shown in the inset. Superparamagnetic colloids.

depinning transition and Tm for the melting transition. Note
that the statistics of the calculation of S(G1) can be improved
by averaging over the six �G1 s with G1 = 4π/

√
3a0 which

give peaks of structure factors.
When we consider colloidal monolayers interacting with

disordered substrates, we compute directly the translational
order parameter in equation (6) where now—in addition to
the thermal average—an average over different disordered
substrate configurations has to be performed. Again, the
solid floating over the disordered substrate is characterized
by the algebraic decay in equation (7), while now both the
pinned and the liquid phase should show an exponential decay
of translational order. To determine the phase we fit the
simulation data of C �G1

(Ri j) to both the function y(R) = a R−b

as well as to the function y(R) = ae−bR , and then decide
what functional form fits better. To this end, we calculate the
ratio χ2

alg/χ
2
exp of the goodness-of-fit parameters for fits to the

exponential function (χ2
exp) and the algebraic function (χ2

alg).
When this ratio is less than 1, this means that the algebraic fit
is better while the exponential fit is better otherwise.

3. Results and discussion

3.1. Regular substrate

We first consider perfectly commensurate substrates of the
form of equation (4) with a filling factor η = 1/9. Figure 1
shows how the translational order of the system, as measured
by the quantity S(G1)/L2, behaves as a function of the
inverse system temperature � for several different values of the
substrate strength v. Perfect hexagonal order implies a value of
S(G1)/L2 equal to one, liquid-like order produces values well
below 0.1. The plot shows that with increasing v the order of
the solid phase generally increases. For βv = 0.1�, the system
shows a phase transition from the pinned directly into the liquid
phase, with a shift of the melting temperature towards higher
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temperatures. For βv = 0.001�, such a shift is not observed,
the behavior is now different. Directly below the melting
temperature (55 < � < 130) the order is identical to the order
of the free system (v = 0), while at even lower temperatures
(� > 130) the curves for βv = 0.001� and βv = 0 differ
considerably. The latter phase at temperatures � > 130 is
the pinned phase, and is the more ordered one, while the other
phase at intermediate temperatures (55 < � < 130) has
exactly the same order as the free solid, and thus corresponds
to the floating-solid phase. Hence, as expected, the system
realizes two distinct solid phases, with a transition point that
is somewhere near Tc = 1/�c = 1/130.

This point can also be estimated from a double logarithmic
plot of S(G1)/L2 versus the system size L, as shown in
figure 2. Here the two phases can be easily distinguished
by means of equation (9): the pinned-solid should lead to a
straight line with zero slope, while the floating phase can be
recognized from producing a straight line with finite slope.
Fits to the expression L−ηG1 (T ) provide us with values for the
exponent ηG1(T ) which are shown in the inset figure. For
lower temperatures (� = 900, 700, 500, 300) the exponent is
below 0.01, while for � = 120, 105, 90 and 75 one obtains
exponents one order of magnitude larger, consistent with our
finding that the depinning transition is near �c = 130. For
� = 45 and 30, the system is in the liquid phase and the
decay of S(G1)/L2 with L is again an order of magnitude
larger, leading to an exponent of around 2 in agreement with
equation (9) (ηG1(T ) = 2.1 ± 0.2 and 2.2 ± 0.2). Exploiting
the results of Halperin and Nelson [9], one can calculate the
expression S(G1)/L2 in the limit T → 0 (� → ∞). For
the floating phase, one obtains S(G1)/L2 = 1 − c1kBT ln L,
while for the pinned phase, the result is S(G1)/L2 = 1 −
c2kBT/v, with c1, c2 being two irrelevant constants. These
expressions confirm that the temperature-driven decay of order
slows down proportionally to 1/v in the pinned state, but
goes logarithmically with system size in the floating state.
To explore the order of the depinning transition, we followed
the procedure outlined in a similar study on depinning in 2D
vortex lattices [14] and calculated histograms of energy density
for different system sizes at temperatures near the depinning
transition. We were not able to identify two peaks in these
histograms, sharpening with increasing system size, as one
would have to find for a first-order transition, and thus assume
that our depinning transition is a second-order transition.

Figure 3 shows phase-diagrams for both the Yukawa
and the superparamagnetic colloids. These diagrams are
obtained by determining the transition points from the size-
dependence of the structure factor, i.e. from plots such as
that in figure 2. We observe that for pinned → liquid the
shift of the melting temperature is proportional to v and that
for the floating → liquid the transition is independent of v,
which is a direct consequence of the fact that the floating-solid
is independent of the substrate. Both diagrams look rather
similar, though the radial dependence of the pair-potential is
different. The floating-solid phase has also been observed in
numerical studies of 2D vortex lattices [13, 14], related XY
models [15] and vortex lattices interacting with square pinning
arrays [16, 17]. The published phase-diagrams look also

Figure 3. Phase-diagrams spanned by temperature and substrate
strength v, for a 2D system of colloids interacting via pair-potentials
of the form �/r̂ 3 (lower panel) and �e−2r̂/r̂ (upper panel).

similar to ours, again for pair-potentials that are completely
different from ours. This and the similarity observed in figure 3
allows us to conclude that the details of the pair-potential are
not decisive for the appearance of a floating-solid phase. We
therefore expect that choosing a longer-ranged cut-off in our
pair-potentials would lead to quantitative, but not qualitative
changes in the phase-diagram.

One central result of [9] is a criterion quantifying the
substrate mesh size below which the floating-solid should be
stable to both the pinned and the fluid phase. For our case at
hand, this criterion predicts the floating phase to be stable if
η < 1/4, implying that for η = 1 a floating-solid cannot form.
We performed also simulations for a system with η = 1 (data
not shown). No floating phase was found. Instead, the system
was always commensurably pinned to the substrate, however
small v was chosen, showing always true long-range order and
a temperature-dependence of S(G1)/L2 like that of βv = 0.1�

in figure 1, with a direct transition pinned to liquid.
Thus, for η = 1, not the strength of v, but just the

perfectly matching periodicity of the substrate is responsible
for the pinning. That is the remarkable stabilizing effect of
η = 1 substrates that has been mentioned in the introduction.
On the other hand, for η < 1 the substrate’s capability to pin
solely by its periodicity is lost. Now, stabilization requires both
a commensurable periodicity and a certain pinning strength.
The crystal is pinned only beyond a threshold value of v,
see figure 3, and floats out of registry below that value. It
then ignores the underlying substrate lattice and behaves as
if it were free. On the level of individual particles, the
difference between the floating- and the pinned-solid phase
can be understood as follows. In the floating-solid phase,
individual colloids have enough thermal energy to hop between
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Figure 4. Translational correlation functions, defined in equation (6),
as a function of the distance R between lattice sites, for Yukawa
particles interacting with a disordered substrate (� = 150). The
substrate strength is v/kT� = 0.10 and 0.01 as indicated. The solid
and dashed curves are respectively algebraic and exponential fits to
the simulation data. System size L = 60 (N = 3600).

neighboring minima of the light field lattice, with the effect
that the mean-square displacement diverges logarithmically as
it does for the free crystal. Such a hopping between minima is
not possible in the pinned phase, that is, (i) at low temperatures
when the colloids do not have enough thermal energy, (ii) at
high values of v when the barrier between minima is too high,
or (iii) at η = 1 when free substrate minima are not available
in the neighborhood of the particle.

3.2. Random substrate

Having explored the depinning transition of the 2D crystal
on the regular substrate, we turn to the disordered substrate,
addressing the question as to whether a floating-solid phase
is possible also over such a substrate. We consider Yukawa
colloids interacting with a disordered substrate of the form
given in equation (5); η is taken to be 1/9, meaning now that
there are nine substrate minima per colloid.

At low temperatures and high substrate strengths, the
system becomes non-ergodic, so that in a simulation the system
cannot find its way to the absolute energy minimum and ends
up in a meaningless quenched state somewhere close to the
arbitrarily chosen start configuration. This is indicated by
the fact that the value of the correlation function C �G1

(R) for
R → ∞ is non-zero and depends on the initial configuration.
In principle, one should have similar problems also in the case
of ordered substrates. The difference, however, is that in the
presence of an ordered substrate the T → 0 configuration of
the system is known so that one can explore phase space in the
neighborhood of this configuration. In contrast, in the case of
a disordered substrate the T → 0 configuration is not known
(a priori). Rather, it must be found through simulation, making
it necessary to step from higher towards lower temperatures.
This is possible only up to a certain temperature beyond which
the system unavoidably gets stuck in some local minima.
Hence, within the v–T plane, we have some regions that are
not accessible because equilibrated results cannot be obtained.

Figure 5. Phase-diagram of a two-dimensional system of Yukawa
particles interacting with a disordered substrate. The diagram is
spanned by temperature (1/�) and substrate strength v. For
parameter combinations of v and � indicated by a filled circle,
equilibrated results could not be obtained. At all other points, the
system is either in the liquid or in the floating-solid phase.

Luckily, the floating solid—which as long as it really floats, is
independent of the pinning potential—should not be affected
by that problem.

The floating-solid phase can again be clearly identified
from its decay behavior. Figure 4 shows the decay
characteristic of the system at � = 150 and for v/kT = 0.01�

and v/kT = 0.10�. It is obvious that for v/kT = 0.01�,
the simulation data fit much better to an algebraic than to an
exponential function (χ2

alg/χ
2
exp = 0.6), indicating that at the

point (� = 150, v/�kT = 0.01) the system is a floating-
solid. In contrast, for v/kT = 0.10�, the simulation data
fit neither to an algebraic nor to an exponential function; this
is caused by the fact that C �G1

(R) approaches the constant
value 0.15 for large distances, indicating that the system is not
properly equilibrated at this specific point in parameter space.
Analyzing in that way the translational correlation function
at several different temperatures and substrate strengths, we
finally arrive at the phase-diagram in figure 5, dividing the
parameter space into the unaccessible region (C �G1

(∞) 
= 0)
and regions where the correlation functions decay as y(R) =
a R−b (floating-solid) or y(R) = ae−bR (liquid phase). In
principle, one should be able to find equilibrated results
(C �G1

(∞) = 0) also for the pinned phase where an exponential
fit should be better than an algebraic one (χ2

alg/χ
2
exp > 1).

However, this was not found. For all points in the solid
phase where equilibrated results were obtained, the correlation
function decayed algebraically. The resulting phase-diagram is
very similar to the corresponding diagram in the upper panel
of figure 3, summarizing the results for the ordered substrate.
The location of the transition line floating-solid → liquid is
identical, as it should be. The line corresponding to the
depinning transition is at a similar position in both diagrams,
though in the absence of a pinned-solid phase this had better
not be called a ‘depinning transition’.

Finally, figure 6 shows the temperature-dependence of
S(G1)/L2 for the case of a disordered substrate and compares
it to the corresponding curve for the free crystal. This figure

5
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Figure 6. Height of structure factor at the reciprocal lattice site �G1 as
a function of the inverse system temperature �, for a 2D system of N
Yukawa colloids interacting with a disordered substrate. The
substrate strength is v/kT� = 0.01 and 0.0 (free crystal) as
indicated. For v/kT � = 0.01, equilibrated results could be obtained
only for � < 250 (triangles with error bars), but not at lower
temperatures (filled circles). Error bars result from an average over
different realizations of disordered substrates. The melting
temperature of the free crystal is T −1

m = 105�. System size L = 60
(N = 3600).

corresponds to figure 1, showing the same quantity for the
regular substrate. Directly below the melting temperature
(105 < � < 250, triangles), the order remains identical
to the order of the free system (v = 0) and becomes
different only below a certain lower temperature (marked by an
arrow). Below this temperature, we were not able to properly
equilibrate the system, the data points in the plot (filled circles)
thus correspond to metastable states.

4. Summary and closing remarks

To summarize, we have studied how colloidal solids interact
with ordered and disordered substrates. For a commensurate
substrate with η = 1, not the strength, but just the periodicity
of the substrate leads to a pinning of the solid to the
substrate. The pinned-solid then adopts the perfect order
of the substrate, the translational order no longer decays,
the mean-square displacement ceases to diverge—the solid is
stabilized. For η = 1/9 the substrate can no longer pin
solely by its periodicity. Now, stabilization requires both
a commensurable periodicity and a certain pinning strength.
Below a threshold value of v, the solid floats out of registry and
remains as unstable as the free system. Our phase-diagrams
for Yukawa and superparamagnetic colloids in figure 3 show
where a floating-solid phase is to be expected within the v–T
plane. These diagrams could in principle be measured, for

example with one of the experimental set-ups described in [6].
Particularly interesting would be an experiment which uses a
switch between a pinned and a free system to visualize the
nature of the 2D instability.

We have also studied the case of a disordered substrate
with a filling factor η = 1/9. We have found that for
sufficiently warm crystals and at low pinning strengths the
substrate may become too weak to have a pinning effect on the
solid, in which case a floating-solid phase can again form, even
though the substrate has a glassy order. Thus, a major result of
this study is that one can observe a floating-solid phase for a
2D colloid–substrate system for a certain range of substrate
strengths irrespective of whether the substrate is regular or
irregular. We should finally remark that in a very recent
experimental study of colloidal crystals on random pinning
potentials [18], it has indeed been verified that the order of the
crystal can be destroyed by a random substrate. However, the
parameter space (temperature, pinning strength) has not been
systematically scanned in search for the existence of a floating-
solid phase which we here predict to exist.
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